Heliyon (Mar 2019)
Genotype-by-environment interaction of newly-developed sweet potato genotypes for storage root yield, yield-related traits and resistance to sweet potato virus disease
Abstract
Genotype-by-environment interaction analysis is key for selection and cultivar release, and to identify suitable production and test environments. The objective of this study was to determine the magnitude of genotype-by-environment interaction (GEI) for storage root yield, yield-related traits and sweet potato virus disease (SPVD) resistance among candidate sweet potato genotypes in Tanzania. Twenty-three newly bred clones and three check varieties were evaluated across six diverse environments using a randomized complete block design with three replications. The Additive Main Effect and Multiplicative Interaction (AMMI) and genotype and genotype-by-environment (GGE) biplot analyses were used to determine GEI of genotypes. Genotype, environment and GEI effects were highly significant (P ≤ 0.01) for the assessed traits. Further, AMMI analysis of variance revealed highly significant (P ≤ 0.001) differences among genotypes, environments and G × E interaction effects for all the studied traits. Both AMMI and GGE biplot analyses identified the following promising genotypes: G2 (Resisto × Ukerewe), G3 (Ukerewe × Ex-Msimbu-1), G4 (03-03 x SPKBH008), G12 (Ukerewe × SPKBH008) and G18 (Resisto × Simama) with high yields, high dry matter content and SPVD resistance across all test environments. The candidate genotypes are recommended for further stability tests and release in Tanzania or similar environments.