Neighborhood Diversity Promotes Tree Growth in a Secondary Forest: The Interplay of Intraspecific Competition, Interspecific Competition, and Spatial Scale
Haonan Zhang,
Yuanyun Gao,
Xiao Zheng,
Yaping Hu,
Xu Zhou,
Yanming Fang,
Yao Li,
Lei Xie,
Hui Ding
Affiliations
Haonan Zhang
Innovative Research Team for Forest Restoration Mechanisms, Chishui National Ecological Quality Comprehensive Monitoring Stations, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China
Yuanyun Gao
Innovative Research Team for Forest Restoration Mechanisms, Chishui National Ecological Quality Comprehensive Monitoring Stations, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China
Xiao Zheng
Research Center for Nature Conservation and Biodiversity, State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, State Environmental Protection Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China
Yaping Hu
Research Center for Nature Conservation and Biodiversity, State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, State Environmental Protection Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China
Xu Zhou
Research Center for Nature Conservation and Biodiversity, State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, State Environmental Protection Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China
Yanming Fang
Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
Yao Li
Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
Lei Xie
Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
Hui Ding
Research Center for Nature Conservation and Biodiversity, State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, State Environmental Protection Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China
Understanding the biodiversity–productivity relationship (BPR) is crucial for biodiversity conservation and ecosystem management. While it is known that diversity enhances forest productivity, the underlying mechanisms at the local neighborhood level remain poorly understood. We established a 9.6 ha dynamic forest plot to study how neighborhood diversity, intraspecific competition, and interspecific competition influence tree growth across spatial scales using linear mixed-effects models. Our analysis reveals a significant positive correlation between neighborhood species richness (NSR) and relative growth rate (RGR). Notably, intraspecific competition, measured by conspecific neighborhood density and resource competition, negatively impacts RGR at finer scales, indicating intense competition among conspecifics for limited resources. In contrast, interspecific competition, measured by heterospecific density and resource competition, has a negligible impact on RGR. The relative importance of diversity and intra/interspecific competition in influencing tree growth varies with scale. At fine scales, intraspecific competition dominates negatively, while at larger scales, the positive effect of NSR on RGR increases, contributing to a positive BPR. These findings highlight the intricate interplay between local interactions and spatial scale in modulating tree growth, emphasizing the importance of considering biotic interactions and spatial variability in studying BPR.