Nutrients (May 2022)

Resistant Maltodextrin Consumption in a Double-Blind, Randomized, Crossover Clinical Trial Induces Specific Changes in Potentially Beneficial Gut Bacteria

  • Volker Mai,
  • Alyssa M. Burns,
  • Rebecca J. Solch,
  • Jennifer C. Dennis-Wall,
  • Maria Ukhanova,
  • Bobbi Langkamp-Henken

DOI
https://doi.org/10.3390/nu14112192
Journal volume & issue
Vol. 14, no. 11
p. 2192

Abstract

Read online

Background: We have previously reported that the addition of resistant maltodextrin (RMD), a fermentable functional fiber, to the diet increases fecal weight as well as the amount of fecal bifidobacteria. Here, we report on the targeted analysis of changes in potentially beneficial gut bacteria associated with the intervention. Objective: The primary objective of this study was to determine the effect of adding 0, 15 and 25 g RMD to the diets of healthy free-living adults on potentially beneficial gut bacteria. Methods: We expanded on our previously reported microbiota analysis in a double-blind, placebo-controlled feeding study (NCT02733263) by performing additional qPCR analyses targeting fecal lactic acid bacteria (LAB), Akkermansia muciniphila, Faecalibacterium prausnitzii and Fusicatenibacter saccharivorans in samples from 49 participants. Results: RMD resulted in an approximately two-fold increase in fecal Fusicatenibacter saccharivorans (p = 0.024 for 15 g/day RMD and p = 0.017 for 25 g/day RMD). For Akkermansia muciniphila and Faecalibacterium prausnitzii, we obtained borderline evidence that showed increased amounts in participants that had low baseline levels of these bacteria (p Fusicatenibacter saccharivorans. Albeit to a lesser extent, RMD at the higher intake level may also increase Akkermansia muciniphila and Faecalibacterium prausnitzii in individuals with low baseline levels of those two species. Potential benefits associated with these microbiota changes remain to be established in studies with quantifiable health-related endpoints.

Keywords