Fire (Sep 2020)
Soil Enzyme Activity and Soil Nutrients Jointly Influence Post-Fire Habitat Models in Mixed-Conifer Forests of Yosemite National Park, USA
Abstract
Disentangling the relative importance of habitat filtering and dispersal limitations at local scales (2) in shaping species composition remains an important question in community ecology. Previous studies have examined the relative importance of these mechanisms using topography and selected soil properties. We examined both topography and edaphic properties from 160 locations in the recently burned 25.6 ha Yosemite Forest Dynamics Plot (YFDP) in Yosemite National Park, California, USA. In addition to eight soil chemical properties, we included phosphatases and urease enzymes in a definition of habitat niches, primarily because of their rapid changes with fire (compared to soil nutrients) and also their role in ecosystem function. We applied environmental variables to the distributions of 11 species. More species–habitat associations were defined by soil properties (54.5%) than topographically-defined habitat (45.4%). We also examined the relative importance of spatial and environmental factors in species assemblage. Proportions explained by spatial and environmental factors differed among species and demographic metrics (stem abundance, basal area increment, mortality, and recruitment). Spatial factors explained more variation than environmental factors in stem abundance, mortality, and recruitment. The contributions of urease and acid phosphatase to habitat definition were significant for species abundance and basal area increment. These results emphasize that a more complete understanding of niche parameters is needed beyond simple topographic factors to explain species habitat preference. The stronger contribution of spatial factors suggests that dispersal limitation and unmeasured environmental variables have high explanatory power for species assemblage in this coniferous forest.
Keywords