PLoS Computational Biology (Jul 2021)

Multitask learning over shared subspaces.

  • Nicholas Menghi,
  • Kemal Kacar,
  • Will Penny

DOI
https://doi.org/10.1371/journal.pcbi.1009092
Journal volume & issue
Vol. 17, no. 7
p. e1009092

Abstract

Read online

This paper uses constructs from machine learning to define pairs of learning tasks that either shared or did not share a common subspace. Human subjects then learnt these tasks using a feedback-based approach and we hypothesised that learning would be boosted for shared subspaces. Our findings broadly supported this hypothesis with either better performance on the second task if it shared the same subspace as the first, or positive correlations over task performance for shared subspaces. These empirical findings were compared to the behaviour of a Neural Network model trained using sequential Bayesian learning and human performance was found to be consistent with a minimal capacity variant of this model. Networks with an increased representational capacity, and networks without Bayesian learning, did not show these transfer effects. We propose that the concept of shared subspaces provides a useful framework for the experimental study of human multitask and transfer learning.