Cell Communication and Signaling (Oct 2024)

MYO6 contributes to tumor progression and enzalutamide resistance in castration-resistant prostate cancer by activating the focal adhesion signaling pathway

  • Shengfeng Zheng,
  • Zhe Hong,
  • Yao Tan,
  • Yue Wang,
  • Junhong Li,
  • Zihao Zhang,
  • Tao Feng,
  • Zongyuan Hong,
  • Guowen Lin,
  • Dingwei Ye

DOI
https://doi.org/10.1186/s12964-024-01897-z
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 18

Abstract

Read online

Abstract Background Enzalutamide (Enz) resistance is a poor prognostic factor for patients with castration-resistant prostate cancer (CRPC), which often involves aberrant expression of the androgen receptor (AR). Myosin VI (MYO6), one member of the myosin family, plays an important role in regulating cell survival and is highly expressed in prostate cancer (PCa). However, whether MYO6 is involved in Enz resistance in CRPC and its mechanism remain unclear. Methods Multiple open-access databases were utilized to examine the relationship between MYO6 expression and PCa progression, and to screen differentially expressed genes (DEGs) and potential signaling pathways associated with the MYO6-regulated Enz resistance. Both in vitro and in vivo tumorigenesis assays were employed to examine the impact of MYO6 on the growth and Enz resistance of PCa cells. Human PCa tissues and related clinical biochemical data were utilized to identify the role of MYO6 in promoting PCa progression and Enz resistance. The molecular mechanisms underlying the regulation of gene expression, PCa progression, and Enz resistance in CRPC by MYO6 were investigated. Results MYO6 expression increases in patients with PCa and is positively correlated with AR expression in PCa cell lines and tissues. Overexpression of AR increases MYO6 expression to promote PCa cell proliferation, migration and invasion, and to inhibit PCa cell apoptosis; whereas knockdown of MYO6 expression reverses these outcomes and enhances Enz function in suppressing the proliferation of the Enz- sensitive and resistant PCa cells both in vitro and in vivo. Mechanistically, AR binds directly to the promoter region (residues − 503 to − 283 base pairs) of MYO6 gene and promotes its transcription. Furthermore, MYO6 activates focal adhesion kinase (FAK) phosphorylation at tyrosine-397 through integrin beta 8 (ITGB8) modulation to promote PCa progression and Enz resistance. Notably, inhibition of FAK activity by Y15, an inhibitor of FAK, can resensitize CRPC cells to Enz treatment in cell lines and mouse xenograft models. Conclusions MYO6 has pro-tumor and Enz-resistant effects in CRPC, suggesting that targeting MYO6 may be beneficial for ENZ-resistant CRPC therapy through the AR/MYO6/FAK signaling pathway.

Keywords