In this paper, we consider a resolvent operator which depends on the composition of two mappings with ⊕ operation. We prove some of the properties of the resolvent operator, that is, that it is single-valued as well as Lipschitz-type-continuous. An existence and convergence result is proven for a generalized implicit set-valued variational inclusion problem with ⊕ operation. Some special cases of a generalized implicit set-valued variational inclusion problem with ⊕ operation are discussed. An example is constructed to illustrate some of the concepts used in this paper.