Cancer Informatics (Jan 2007)

Tumor Genome Wide DNA Alterations Assessed by Array CGH in Patients with Poor and Excellent Survival following Operation for Colorectal Cancer

  • Kristina K. Lagerstedt,
  • Johan Staaf,
  • Göran Jönsson,
  • Elisabeth Hansson,
  • Christina Lönnroth,
  • Ulf Kressner,
  • Lars Lindström,
  • Svante Nordgren,
  • Åke Borg,
  • Kent Lundholm

DOI
https://doi.org/10.1177/117693510700300014
Journal volume & issue
Vol. 3

Abstract

Read online

Genome wide DNA alterations were evaluated by array CGH in addition to RNA expression profiling in colorectal cancer from patients with excellent and poor survival following primary operations. DNA was used for CGH in BAC and cDNA arrays. Global RNA expression was determined by 44K arrays. DNA and RNA from tumor and normal colon were used from cancer patients grouped according to death, survival or Dukes A, B, C and D tumor stage. Confirmed DNA alterations in all Dukes A – D were judged relevant for carcinogenesis, while changes in Dukes C and D only were regarded relevant for tumor progression. Copy number gain was more common than loss in tumor tissue (p < 0.01). Major tumor DNA alterations occurred in chromosome 8, 13, 18 and 20, where short survival included gain in 8q and loss in 8p. Copy number gains related to tumor progression were most common on chromosome 7, 8, 19, 20, while corresponding major losses appeared in chromosome 8. Losses at chromosome 18 occurred in all Dukes stages. Normal colon tissue from cancer patients displayed gains in chromosome 19 and 20. Mathematical Vector analysis implied a number of BAC-clones in tumor DNA with genes of potential importance for death or survival. The genomic variation in colorectal cancer cells is tremendous and emphasizes that BAC array CGH is presently more powerful than available statistical models to discriminate DNA sequence information related to outcome. Present results suggest that a majority of DNA alterations observed in colorectal cancer are secondary to tumor progression. Therefore, it would require an immense work to distinguish primary from secondary DNA alterations behind colorectal cancer.