Nuclear Materials and Energy (Mar 2023)
Characterisation of divertor detachment onset in JET-ILW hydrogen, deuterium, tritium and deuterium–tritium low-confinement mode plasmas
- M. Groth,
- V. Solokha,
- S. Aleiferis,
- S. Brezinsek,
- M. Brix,
- I.S. Carvalho,
- P. Carvalho,
- G. Corrigan,
- D. Harting,
- N. Horsten,
- I. Jepu,
- J. Karhunen,
- K. Kirov,
- B. Lomanowski,
- K.D. Lawson,
- C. Lowry,
- A.G. Meigs,
- S. Menmuir,
- E. Pawelec,
- T. Pereira,
- A. Shaw,
- S. Silburn,
- B. Thomas,
- S. Wiesen,
- P. Börner,
- D. Borodin,
- S. Jachmich,
- D. Reiter,
- G. Sergienko,
- Z. Stancar,
- B. Viola,
- P. Beaumont,
- J. Bernardo,
- I. Coffey,
- N.J. Conway,
- E. de la Luna,
- D. Douai,
- C. Giroud,
- J. Hillesheim,
- L. Horvath,
- A. Huber,
- P. Lomas,
- C.F. Maggi,
- M. Maslov,
- C. Perez von Thun,
- S. Scully,
- N. Vianello,
- M. Wischmeier
Affiliations
- M. Groth
- Aalto University, Espoo, Finland; Corresponding author at: Aalto University, Otakaari 1, 02150 Espoo, Finland.
- V. Solokha
- Aalto University, Espoo, Finland
- S. Aleiferis
- NCSR Demokritos Institute of Nuclear and Particle Physics, Athens, Greece; UKAEA, Culham Science Centre, Abingdon, UK
- S. Brezinsek
- Forschungszentrum Jülich, Institute for Energy and Climate Research Plasma Physics, Jülich, Germany
- M. Brix
- UKAEA, Culham Science Centre, Abingdon, UK
- I.S. Carvalho
- Instituto de Plasmas e Fusão Nuclear, Universidade Tecnica de Lisboa, Lisbon, Portugal
- P. Carvalho
- Instituto de Plasmas e Fusão Nuclear, Universidade Tecnica de Lisboa, Lisbon, Portugal; UKAEA, Culham Science Centre, Abingdon, UK
- G. Corrigan
- UKAEA, Culham Science Centre, Abingdon, UK
- D. Harting
- Forschungszentrum Jülich, Institute for Energy and Climate Research Plasma Physics, Jülich, Germany
- N. Horsten
- Aalto University, Espoo, Finland; KU Leuven, Leuven, Belgium
- I. Jepu
- National Institute for Laser Plasma and Radiation Physics, Măgurele, Romania; UKAEA, Culham Science Centre, Abingdon, UK
- J. Karhunen
- UKAEA, Culham Science Centre, Abingdon, UK
- K. Kirov
- UKAEA, Culham Science Centre, Abingdon, UK
- B. Lomanowski
- Oak Ridge National Laboratory, Oak Ridge, TN, USA
- K.D. Lawson
- UKAEA, Culham Science Centre, Abingdon, UK
- C. Lowry
- UKAEA, Culham Science Centre, Abingdon, UK
- A.G. Meigs
- UKAEA, Culham Science Centre, Abingdon, UK
- S. Menmuir
- UKAEA, Culham Science Centre, Abingdon, UK
- E. Pawelec
- University of Opole, Opole, Poland
- T. Pereira
- Instituto de Plasmas e Fusão Nuclear, Universidade Tecnica de Lisboa, Lisbon, Portugal
- A. Shaw
- UKAEA, Culham Science Centre, Abingdon, UK
- S. Silburn
- UKAEA, Culham Science Centre, Abingdon, UK
- B. Thomas
- UKAEA, Culham Science Centre, Abingdon, UK
- S. Wiesen
- Forschungszentrum Jülich, Institute for Energy and Climate Research Plasma Physics, Jülich, Germany
- P. Börner
- Forschungszentrum Jülich, Institute for Energy and Climate Research Plasma Physics, Jülich, Germany
- D. Borodin
- Forschungszentrum Jülich, Institute for Energy and Climate Research Plasma Physics, Jülich, Germany
- S. Jachmich
- ITER Organization, St Paul Lez Durance Cedex, France
- D. Reiter
- Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- G. Sergienko
- Forschungszentrum Jülich, Institute for Energy and Climate Research Plasma Physics, Jülich, Germany
- Z. Stancar
- UKAEA, Culham Science Centre, Abingdon, UK
- B. Viola
- UKAEA, Culham Science Centre, Abingdon, UK
- P. Beaumont
- UKAEA, Culham Science Centre, Abingdon, UK
- J. Bernardo
- UKAEA, Culham Science Centre, Abingdon, UK
- I. Coffey
- UKAEA, Culham Science Centre, Abingdon, UK
- N.J. Conway
- UKAEA, Culham Science Centre, Abingdon, UK
- E. de la Luna
- Laboratorio Nacional de Fusion, CIEMAT, Madrid, Madrid, Spain
- D. Douai
- CEA, IRFM, F-13108 Saint Paul Lez Durance, France
- C. Giroud
- UKAEA, Culham Science Centre, Abingdon, UK
- J. Hillesheim
- UKAEA, Culham Science Centre, Abingdon, UK
- L. Horvath
- UKAEA, Culham Science Centre, Abingdon, UK
- A. Huber
- Forschungszentrum Jülich, Institute for Energy and Climate Research Plasma Physics, Jülich, Germany
- P. Lomas
- UKAEA, Culham Science Centre, Abingdon, UK
- C.F. Maggi
- UKAEA, Culham Science Centre, Abingdon, UK
- M. Maslov
- UKAEA, Culham Science Centre, Abingdon, UK
- C. Perez von Thun
- Institute of Plasma Physics and Laser Microfusion (IPPLM), Warsaw, Poland
- S. Scully
- UKAEA, Culham Science Centre, Abingdon, UK
- N. Vianello
- Consorzio RFX, CNR, ENEA, INFN, Università di Padova, Padova, Italy
- M. Wischmeier
- Max Planck Institut für Plasmaphysik, Garching, Germany
- Journal volume & issue
-
Vol. 34
p. 101345
Abstract
Measurements of the ion currents to and plasma conditions at the low-field side (LFS) divertor target plate in low-confinement mode plasmas in the JET ITER-like wall materials configuration show that the core plasma density required to detach the LFS divertor plasma is independent of the hydrogenic species protium, deuterium and tritium, and a 40 %/60 % deuterium–tritium mixture. This observation applies to a divertor plasma configuration with the LFS strike line connected to the horizontal part of the LFS divertor chosen because of its superior diagnostic coverage. The finding is independent of the operational status of the JET cryogenic pump. The electron temperature (Te) at the LFS strike line was markedly reduced from 25 eV to 5 eV over a narrow range of increasing core plasma density, and observed to be between 2 eV and 3 eV at the onset of detachment. The electron density (ne) peaks across the LFS plasma when Te at the target plate is 1 eV, and spatially moves to the X-point for higher core densities. The density limit was found approximately 20 % higher in protium than in tritium and deuterium–tritium plasmas.