Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease (Jan 2016)

HECT‐Type Ubiquitin E3 Ligase ITCH Interacts With Thioredoxin‐Interacting Protein and Ameliorates Reactive Oxygen Species–Induced Cardiotoxicity

  • Yoichiro Otaki,
  • Hiroki Takahashi,
  • Tetsu Watanabe,
  • Akira Funayama,
  • Shunsuke Netsu,
  • Yuki Honda,
  • Taro Narumi,
  • Shinpei Kadowaki,
  • Hiromasa Hasegawa,
  • Shintaro Honda,
  • Takanori Arimoto,
  • Tetsuro Shishido,
  • Takuya Miyamoto,
  • Hideaki Kamata,
  • Osamu Nakajima,
  • Isao Kubota

DOI
https://doi.org/10.1161/JAHA.115.002485
Journal volume & issue
Vol. 5, no. 1

Abstract

Read online

BackgroundThe homologous to the E6‐AP carboxyl terminus (HECT)–type ubiquitin E3 ligase ITCH is an enzyme that plays a pivotal role in posttranslational modification by ubiquitin proteasomal protein degradation. Thioredoxin‐interacting protein (TXNIP) is a negative regulator of the thioredoxin system and an endogenous reactive oxygen species scavenger. In the present study, we focused on the functional role of ubiquitin E3 ligase ITCH and its interaction with TXNIP to elucidate the mechanism of cardiotoxicity induced by reactive oxygen species, such as doxorubicin and hydrogen peroxide. Methods and ResultsProtein interaction between TXNIP and ITCH in cardiomyocyte was confirmed by immunoprecipitation assays. Overexpression of ITCH increased proteasomal TXNIP degradation and augmented thioredoxin activity, leading to inhibition of reactive oxygen species generation, p38 MAPK, p53, and subsequent intrinsic pathway cardiomyocyte apoptosis in reactive oxygen species–induced cardiotoxicity. Conversely, knockdown of ITCH using small interfering RNA inhibited TXNIP degradation and resulted in a subsequent increase in cardiomyocyte apoptosis. Next, we generated a transgenic mouse with cardiac‐specific overexpression of ITCH, called the ITCH‐Tg mouse. The expression level of TXNIP in the myocardium in ITCH‐Tg mice was significantly lower than WT littermates. In ITCH‐Tg mice, cardiac dysfunction and remodeling were restored compared with WT littermates after doxorubicin injection and myocardial infarction surgery. Kaplan–Meier analysis revealed that ITCH‐Tg mice had a higher survival rate than WT littermates after doxorubicin injection and myocardial infarction surgery. ConclusionWe demonstrated, for the first time, that ITCH targets TXNIP for ubiquitin‐proteasome degradation in cardiomyocytes and ameliorates reactive oxygen species–induced cardiotoxicity through the thioredoxin system.

Keywords