Heliyon (Sep 2024)

ECG arrhythmia classification based on the fast ant colony clustering algorithm with improved spatiotemporal feature perception ability

  • Shuguang Qin,
  • Linyue Liu,
  • Xinhong Wang,
  • Ning Dong,
  • Ning Li,
  • Qiangsun Zheng

Journal volume & issue
Vol. 10, no. 17
p. e37111

Abstract

Read online

Electrocardiograph (ECG) is one of the most critical physiological signals used for arrhythmia diagnosis. In recent years, ECG arrhythmia classification devices consisting of multi-module sensors, clustering algorithms and neural networks play an important role in monitoring and diagnosing cardiovascular diseases. However, the commonly used ECG arrhythmia classification methods are still facing some problems such as the complex model structure and long running time. To address the above problems, this paper proposes an ECG arrhythmia classification method based on the fast ant colony clustering algorithm with improved spatiotemporal feature perception ability (SFP-FACC), which uses LSTM to fit the cluster centers and avoids the time consumption of updating the cluster centers during the classification process. The spatiotemporal feature perception ability of this model with the dynamic time warping (DTW) algorithm is improved. The classification is achieved by applying the combination of Euclidean distance and DTW. The convergence speed of the model is improved by using dynamic pheromone volatility coefficient; and finally the optimal solution of the model is determined by using radix sort. Based on the MIT-BIH arrhythmia dataset, the overall accuracy of the proposed classification method in this paper achieves 99.04 %, and even the accuracy of certain types of classification achieves 100 %, and the running time is about 3.5 times faster than that of the basic models. The experiments show that the method proposed in this paper has certain advantages.

Keywords