IEEE Access (Jan 2020)

Binary Social Mimic Optimization Algorithm With X-Shaped Transfer Function for Feature Selection

  • Kushal Kanti Ghosh,
  • Pawan Kumar Singh,
  • Junhee Hong,
  • Zong Woo Geem,
  • Ram Sarkar

DOI
https://doi.org/10.1109/ACCESS.2020.2996611
Journal volume & issue
Vol. 8
pp. 97890 – 97906

Abstract

Read online

Definitive optimization algorithms are not able to solve high dimensional optimization problems when the search space grows exponentially with the problem size, and an exhaustive search also becomes impractical. To encounter this problem, researchers use approximation algorithms. A category of approximation algorithms is meta-heuristic algorithms which have shown an acceptable degree of efficiency to solve this kind of problems. Social Mimic Optimization (SMO) algorithm is a recently proposed meta-heuristic algorithm which is used to optimize problems with continuous solution space. It is proposed by following the behavior of people in society. SMO can efficiently explore the solution space for obtaining optimal or near-optimal solution by minimizing a given fitness function. Feature selection is a binary optimization problem where the aim is to maximize the classification accuracy of a learning algorithm using minimum the number of features. To convert the continuous search space to a binary one, a proper transfer function is required. The effect a transfer function has on the binary variant of an optimization algorithm is very important since selecting a particular subset of features based on the solution values attained by the algorithm in continuous search space depends on the considered transfer function. To this end, we have proposed a new transfer function, namely X-shaped transfer function, to enhance the exploration and exploitation ability of binary SMO. The proposed X-shaped transfer function utilizes two components and crossover operation to obtain a new solution. Effect of the proposed X-shaped transfer function is compared with the effect of four S-shaped and four V-shaped transfer functions on SMO in terms of achieved classification accuracy, rate of convergence, and number of features selected over 18 standard UCI datasets. The proposed algorithm is also compared with state-of-the-art meta-heuristic feature selection (FS) algorithms. Experimental results confirm the efficiency of the proposed approach in improving the classification accuracy compared to other meta-heuristic algorithms, and the superiority of X-shaped transfer function over commonly used S-shaped and V-shaped transfer functions. The source code of the proposed method along with the datasets used can be found at https://github.com/Rangerix/SocialMimic.

Keywords