Alzheimer’s Research & Therapy (May 2024)

Combining plasma Aβ and p-tau217 improves detection of brain amyloid in non-demented elderly

  • Yoshiki Niimi,
  • Shorena Janelidze,
  • Kenichiro Sato,
  • Naoki Tomita,
  • Tadashi Tsukamoto,
  • Takashi Kato,
  • Kenji Yoshiyama,
  • Hisatomo Kowa,
  • Atsushi Iwata,
  • Ryoko Ihara,
  • Kazushi Suzuki,
  • Kensaku Kasuga,
  • Takeshi Ikeuchi,
  • Kenji Ishii,
  • Kengo Ito,
  • Akinori Nakamura,
  • Michio Senda,
  • Theresa A. Day,
  • Samantha C. Burnham,
  • Leonardo Iaccarino,
  • Michael J. Pontecorvo,
  • Oskar Hansson,
  • Takeshi Iwatsubo

DOI
https://doi.org/10.1186/s13195-024-01469-w
Journal volume & issue
Vol. 16, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background Maximizing the efficiency to screen amyloid-positive individuals in asymptomatic and non-demented aged population using blood-based biomarkers is essential for future success of clinical trials in the early stage of Alzheimer’s disease (AD). In this study, we elucidate the utility of combination of plasma amyloid-β (Aβ)-related biomarkers and tau phosphorylated at threonine 217 (p-tau217) to predict abnormal Aβ-positron emission tomography (PET) in the preclinical and prodromal AD. Methods We designed the cross-sectional study including two ethnically distinct cohorts, the Japanese trial-ready cohort for preclinica and prodromal AD (J-TRC) and the Swedish BioFINDER study. J-TRC included 474 non-demented individuals (CDR 0: 331, CDR 0.5: 143). Participants underwent plasma Aβ and p-tau217 assessments, and Aβ-PET imaging. Findings in J-TRC were replicated in the BioFINDER cohort including 177 participants (cognitively unimpaired: 114, mild cognitive impairment: 63). In both cohorts, plasma Aβ(1-42) (Aβ42) and Aβ(1-40) (Aβ40) were measured using immunoprecipitation-MALDI TOF mass spectrometry (Shimadzu), and p-tau217 was measured with an immunoassay on the Meso Scale Discovery platform (Eli Lilly). Results Aβ-PET was abnormal in 81 participants from J-TRC and 71 participants from BioFINDER. Plasma Aβ42/Aβ40 ratio and p-tau217 individually showed moderate to high accuracies when detecting abnormal Aβ-PET scans, which were improved by combining plasma biomarkers and by including age, sex and APOE genotype in the models. In J-TRC, the highest AUCs were observed for the models combining p-tau217/Aβ42 ratio, APOE, age, sex in the whole cohort (AUC = 0.936), combining p-tau217, Aβ42/Aβ40 ratio, APOE, age, sex in the CDR 0 group (AUC = 0.948), and combining p-tau217/Aβ42 ratio, APOE, age, sex in the CDR 0.5 group (AUC = 0.955), respectively. Each subgroup results were replicated in BioFINDER, where the highest AUCs were seen for models combining p-tau217, Aβ42/40 ratio, APOE, age, sex in cognitively unimpaired (AUC = 0.938), and p-tau217/Aβ42 ratio, APOE, age, sex in mild cognitive impairment (AUC = 0.914). Conclusions Combination of plasma Aβ-related biomarkers and p-tau217 exhibits high performance when predicting Aβ-PET positivity. Adding basic clinical information (i.e., age, sex, APOE ε genotype) improved the prediction in preclinical AD, but not in prodromal AD. Combination of Aβ-related biomarkers and p-tau217 could be highly useful for pre-screening of participants in clinical trials of preclinical and prodromal AD.

Keywords