Applied Sciences (Aug 2018)

A Study on Stability Control of Grid Connected DC Distribution System Based on Second Order Generalized Integrator-Frequency Locked Loop (SOGI-FLL)

  • Jin-Wook Kang,
  • Ki-Woong Shin,
  • Hoon Lee,
  • Kyung-Min Kang,
  • Jintae Kim,
  • Chung-Yuen Won

DOI
https://doi.org/10.3390/app8081387
Journal volume & issue
Vol. 8, no. 8
p. 1387

Abstract

Read online

This paper studies a second order generalized integrator-frequency locked loop (SOGI-FLL) control scheme applicable for 3-phase alternating current/direct current (AC/DC) pulse width modulation (PWM) converters used in DC distribution systems. The 3-phase AC/DC PWM converter is the most important power conversion system of DC distribution, since it can boost 380 Vrms 3-phase line-to-line AC voltage to 700 Vdc DC output with various DC load devices and grid voltages. The direct-quadrature (d-q) transformation, positive sequence voltage extraction, proportional integral (PI) voltage/current control, and phase locked loop (PLL) are necessary to control the 3-phase AC/DC PWM converter. Besides, a digital filter, such as low pass filter and all pass filter, are essential in the conventional synchronous reference frame-phase locked loop (SRF-PLL) method to eliminate the low order harmonics of input. However, they limit the bandwidth of the controller, which directly affects the output voltage and load of 3-phase AC/DC PWM converter when sever voltage fluctuation, such as sag, swell, etc. occurred in the grid. On the other hand, the proposed control method using SOGI-FLL is able to do phase angle detection, positive sequence voltage extraction, and harmonic filtering without additional digital filters, so that more stable and fast transient control is achieved in the DC distribution system. To verify the improvement of the characteristics in the unbalanced voltage and frequency fluctuation of the grid, a simulation and experiment are implemented with 50 kW 3-phase AC/DC PWM converter used in DC distribution.

Keywords