Crystals (Aug 2019)

Structural and Reactivity Analyses of Nitrofurantoin–4-dimethylaminopyridine Salt Using Spectroscopic and Density Functional Theory Calculations

  • Eram Khan,
  • Anuradha Shukla,
  • Karnica Srivastava,
  • Debraj Gangopadhyay,
  • Khaled H. Assi,
  • Poonam Tandon,
  • Venu R. Vangala

DOI
https://doi.org/10.3390/cryst9080413
Journal volume & issue
Vol. 9, no. 8
p. 413

Abstract

Read online

Pharmaceutical salt, nitrofurantoin–4-dimethylaminopyridine (NF-DMAP), along with its native components NF and DMAP are scrutinized by FT-IR and FT-Raman spectroscopy along with density functional theory so that an insight into the H-bond patterns in the respective crystalline lattices can be gained. Two different functionals, B3LYP and wB97X-D, have been used to compare the theoretical results. The FT-IR spectra obtained for NF-DMAP and NF clearly validate the presence of C33–H34⋅⋅⋅O4 and N23–H24⋅⋅⋅N9 hydrogen bonds by shifting in the stretching vibration of –NH and –CH group of DMAP+ towards the lower wavenumber side. To explore the significance of hydrogen bonding, quantum theory of atoms in molecules (QTAIM) has been employed, and the findings suggest that the N23–H24⋅⋅⋅N9 bond is a strong intermolecular hydrogen bond. The decrement in the HOMO-LUMO gap, which is calculated from NF → NF-DMAP, reveals that the active pharmaceutical ingredient is chemically less reactive compared to the salt. The electrophilicity index (ω) profiles for NF and DMAP confirms that NF is acting as electron acceptor while DMAP acts as electron donor. The reactive sites of the salt are plotted by molecular electrostatic potential (MEP) surface and calculated using local reactivity descriptors.

Keywords