<i>Escherichia coli</i> Occurrence and Antimicrobial Resistance in a Swine Slaughtering Process
Aryele Nunes da Cruz Encide Sampaio,
Evelyn Fernanda Flores Caron,
Camila Koutsodontis Cerqueira-Cézar,
Lára Cristina Bastos Juliano,
Leonardo Ereno Tadielo,
Patrícia Regina Lopes Melo,
Janaína Prieto de Oliveira,
José Carlos de Figueiredo Pantoja,
Otávio Augusto Martins,
Luís Augusto Nero,
Fábio Sossai Possebon,
Juliano Gonçalves Pereira
Affiliations
Aryele Nunes da Cruz Encide Sampaio
School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu Campus, Distrito de Rubião Jr, SN, Botucatu 18618-681, São Paulo, Brazil
Evelyn Fernanda Flores Caron
School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu Campus, Distrito de Rubião Jr, SN, Botucatu 18618-681, São Paulo, Brazil
Camila Koutsodontis Cerqueira-Cézar
School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu Campus, Distrito de Rubião Jr, SN, Botucatu 18618-681, São Paulo, Brazil
Lára Cristina Bastos Juliano
School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu Campus, Distrito de Rubião Jr, SN, Botucatu 18618-681, São Paulo, Brazil
Leonardo Ereno Tadielo
School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu Campus, Distrito de Rubião Jr, SN, Botucatu 18618-681, São Paulo, Brazil
Patrícia Regina Lopes Melo
School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu Campus, Distrito de Rubião Jr, SN, Botucatu 18618-681, São Paulo, Brazil
Janaína Prieto de Oliveira
School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu Campus, Distrito de Rubião Jr, SN, Botucatu 18618-681, São Paulo, Brazil
José Carlos de Figueiredo Pantoja
School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu Campus, Distrito de Rubião Jr, SN, Botucatu 18618-681, São Paulo, Brazil
Otávio Augusto Martins
School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu Campus, Distrito de Rubião Jr, SN, Botucatu 18618-681, São Paulo, Brazil
Luís Augusto Nero
Food Inspection Laboratory, Department of Veterinary Medicine, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
Fábio Sossai Possebon
School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu Campus, Distrito de Rubião Jr, SN, Botucatu 18618-681, São Paulo, Brazil
Juliano Gonçalves Pereira
School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu Campus, Distrito de Rubião Jr, SN, Botucatu 18618-681, São Paulo, Brazil
The swine production chain can be a reservoir of antimicrobial-resistant Escherichia coli, which transfers resistance genes to other bacteria, serving as an important biomarker in the One Health approach. This study aimed to identify the frequency and antimicrobial resistance profile of E. coli in the swine production chain, assess the presence of extended-spectrum beta-lactamases (ESBL), and compare resistance profiles across different sample types. A total of 622 samples of swine carcasses from various points of the slaughter process (n = 400), swine feces (n = 100), commercial cuts (n = 45), environment (n = 67), and feces from employees (n = 10) of a pig slaughterhouse certified by the Federal Inspection Service, located in São Paulo state, Brazil, were collected. A total of 1260 E. coli isolates were obtained from the samples, with 73.6% of the samples testing positive. The agar disk diffusion test was performed with 10 different classes of antimicrobials. To confirm the production of ESBLs, the isolates were submitted to a double-disk synergism test using cefotaxime, ceftazidime, and amoxicillin with clavulanic acid. Of the total isolates, 80.71% were multidrug resistant. All ESBL-producing isolates were multidrug resistant and resistant to amoxicillin, tetracycline, and chloramphenicol. Isolates from human feces samples had less chance of being multidrug resistant than samples from other sources. The diversity of resistance profiles was verified in the samples, not clustering according to the sources, except for human feces isolates that clustered, evidencing lower antimicrobial resistance variability of these samples. Antimicrobial resistance is significantly present in the pork production chain, necessitating a comprehensive multidisciplinary approach to effectively mitigate risks within the One Health framework.