Ecotoxicology and Environmental Safety (Sep 2021)

Amperometric determination of ecotoxic N-methyl-p-aminophenol sulfate in photographic solution and river water samples based on graphene oxide/CeNbO4 nanocomposite catalyst

  • Bhuvanenthiran Mutharani,
  • Praveen Kumar Gopi,
  • Shen-Ming Chen,
  • Hsieh-Chih Tsai,
  • Faheem Ahmed,
  • Ahmed S. Haidyrah,
  • Palraj Ranganathan

Journal volume & issue
Vol. 220
p. 112373

Abstract

Read online

The electronic conductivity of the metal oxides is generally increased by hybridization of highly conductive carbon supportive materials. In this present work, we have demonstrated a novel one-pot preparation of cerium niobate (CeNbO4) nanoparticles embedded with graphene oxide (GO/CeNbO4) composite, for ultrasensitive detection of the photographic developing agent, metol (MTL). The as-prepared GO/CeNbO4 was analyzed by various characterization techniques. The intensive characterization techniques were used to affirm the detailed structural moiety, size, morphology, and surface area of GO/CeNbO4. The GO/CeNbO4 modified glassy carbon electrode (GCE) affords a superior electrocatalytic activity toward MTL. The obtained amperometric response on the GO/CeNbO4/GCE holding an extremely low level detection of 10 nM and superior sensitivity of 10.97 µA µM–1 cm–2 toward MTL detection. Besides, the GO/CeNbO4/GCE also gives excellent selectivity, stability, repeatability, and reproducibility. We achieved excellent recovery results in real photographic solution and river water samples analysis with great accuracy. This work offers a novel insight into the growth of the carbon-based niobate family with electrochemical sensor applications.

Keywords