Galaxies (Aug 2019)

PKS 2155-304: A Case Study of Blazar Variability Power Spectrum at the Highest Energies and on the Longest Timescales

  • Arti Goyal

DOI
https://doi.org/10.3390/galaxies7030073
Journal volume & issue
Vol. 7, no. 3
p. 73

Abstract

Read online

We present the results of our Power Spectral Density (PSD) analysis for the BL Lac object PKS 2155−304, utilizing the nightly-binned long-term light curve from the decade-long monitoring, as well as the minute-binned intra-night light curve from the High Energy Stereoscopic Survey (H.E.S.S.; >200 GeV). The source is unique for exhibiting the shortest flux-doubling timescale at Very High Energy (VHE) among its class and thus provides a rare opportunity to study the particle acceleration on the smallest spatial scales in blazar jets. The light curves are modeled in terms of the Continuous-Time Auto-Regressive Moving Average (CARMA) process. The combined long-term and intra-night PSD extends up to ∼6 decades in the temporal frequency range; unprecedented at the TeV energies for a blazar source. Our systematic approach reveals that PKS 2155−304 shows, on average, a complex shape of variability power spectrum, with more variability power on longer timescales. The long-term variability is best modeled by the CARMA(2,1) process, while the intra-night variability is modeled by a CARMA(1,0) process. We note that the CARMA(1,0) process refers to an Ornstein−Uhlenbeck process where the power-law PSD slope (PSD varies as a function of variability frequency to the power of the negative slope) changes from two to zero, above a certain “characteristic/relaxation” timescale. Even though the derived power spectrum of the intra-night light curve did not reveal a flattening, we speculate such relaxation must occur on timescales longer than a few hours for the source.

Keywords