Intelligent Systems with Applications (Jun 2024)

Modified symbiotic organisms search optimization for automatic construction of convolutional neural network architectures

  • Fatsuma Jauro,
  • Abdulsalam Ya'u Gital,
  • Usman Ali Abdullahi,
  • Aminu Onimisi Abdulsalami,
  • Mohammed Abdullahi,
  • Adamu Abubakar Ibrahim,
  • Haruna Chiroma

Journal volume & issue
Vol. 22
p. 200349

Abstract

Read online

Convolutional Neural Networks (ConvNets) have demonstrated impressive capabilities in image classification; however, the manual creation of these models is a labor-intensive and time-consuming endeavor due to their inherent complexity. This research introduces an innovative approach to Convolutional Neural Network (ConvNet) architecture generation through the utilization of the Symbiotic Organism Search ConvNet (SOS_ConvNet) algorithm. Leveraging the Symbiotic Organism Search optimization technique, SOS_ConvNet evolves ConvNet architectures tailored for diverse image classification tasks. The algorithm's distinctive feature lies in its ability to perform non-numeric computations, rendering it adaptable to intricate deep learning problems. To assess the effectiveness of SOS_ConvNet, experiments were conducted on diverse datasets, including MNIST, Fashion-MNIST, CIFAR-10, and the Breast Cancer dataset. Comparative analysis against existing models showcased the superior performance of SOS_ConvNet in terms of accuracy, error rate, and parameter efficiency. Notably, on the MNIST dataset, SOS_ConvNet achieved an impressive 0.31 % error rate, while on Fashion-MNIST, it demonstrated a competitive 6.7 % error rate, coupled with unparalleled parameter efficiency of 0.24 million parameters. The model excelled on CIFAR-10 and BreakHis datasets, yielding accuracies of 82.78 % and 89.12 %, respectively. Remarkably, the algorithm achieves remarkable accuracy while maintaining moderate model size.

Keywords