Physical Review Research (Jan 2023)

Sympathetic cooling and squeezing of two colevitated nanoparticles

  • T. W. Penny,
  • A. Pontin,
  • P. F. Barker

DOI
https://doi.org/10.1103/PhysRevResearch.5.013070
Journal volume & issue
Vol. 5, no. 1
p. 013070

Abstract

Read online Read online

Levitated particles are an ideal tool for measuring weak forces and investigating quantum mechanics in macroscopic objects. Arrays of two or more of these particles have been suggested for improving force sensitivity and entangling macroscopic objects. In this article, two charged, silica nanoparticles, that are coupled through their mutual Coulomb repulsion, are trapped in a Paul trap, and the individual masses and charges of both particles are characterized. We demonstrate sympathetic cooling of one nanoparticle coupled via the Coulomb interaction to the second nanoparticle to which feedback cooling is directly applied. We also implement sympathetic squeezing through a similar process showing nonthermal motional states can be transferred by the Coulomb interaction. This work establishes protocols to cool and manipulate arrays of nanoparticles for sensing and minimizing the effect of optical heating in future experiments.