Biotechnology for Biofuels and Bioproducts (Jul 2022)

Characterization of a novel thermophilic metagenomic GH5 endoglucanase heterologously expressed in Escherichia coli and Saccharomyces cerevisiae

  • Juan-José Escuder-Rodríguez,
  • María González-Suarez,
  • María-Eugenia deCastro,
  • Almudena Saavedra-Bouza,
  • Manuel Becerra,
  • María-Isabel González-Siso

DOI
https://doi.org/10.1186/s13068-022-02172-4
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Endoglucanases from thermophilic microorganisms are a valuable resource as they can be used in a wide variety of biotechnological applications including the valorisation of biomass and the production of biofuels. In the present work we analysed the metagenome from the hot spring Muiño da Veiga, located in the northwest of Spain (in the Galicia region), in search for novel thermostable endoglucanases. Results Sequence analysis of the metagenome revealed a promising enzyme (Cel776). Predictions on protein structure and conserved amino acid sequences were conducted, as well as expression in heterologous systems with Escherichia coli and Saccharomyces cerevisiae as the host. Cel776Ec was correctly expressed and purified by taking advantage of the His-Tag system, with a yield of 0.346 U/mL in the eluted fraction. Cel776Sc was expressed extracellulary and was easily recovered from the supernatant without the need of further purification, requiring only a concentration step by ultrafiltration, with a significantly higher yield of 531.95 U/mL, revealing a much more suitable system for production of large amounts of the enzyme. Their biochemical characterization revealed biotechnologically interesting enzymes. Both Cel776Ec and Cel776Sc had an optimal temperature of 80 °C and optimal pH of 5. Cel776Ec exhibited high thermostability maintaining its activity for 24 h at 60 °C and maintained its activity longer than Cel776Sc at increasing incubation temperatures. Moreover, its substrate specificity allowed the degradation of both cellulose and xylan. Whereas Cel776Ec was more active in the presence of calcium and magnesium, manganese was found to increase Cel776Sc activity. A stronger inhibitory effect was found for Cel776Ec than Cel776Sc adding detergent SDS to the reaction mix, whereas EDTA only significantly affected Cel776Sc activity. Conclusions Our study reports the discovery of a new promising biocatalyst for its application in processes, such as the production of biofuel and the saccharification of plant biomass, due to its bifunctional enzymatic activity as an endoglucanase and as a xylanase, as well as highlights the advantages of a yeast expression system over bacteria.

Keywords