PeerJ (May 2025)

Genetic variability and trait associations for physiological and agronomic characteristics in bread wheat genotypes under drought stress and well-watered conditions

  • Mohammed O. Alshaharni,
  • Fatmah A. Safhi,
  • Nora M. Al Aboud,
  • Dmitry E. Kucher,
  • Eman Fayad,
  • Mohammed Alqurashi,
  • Rahmah N. Al-Qthanin,
  • Ibtesam S.M. Almami,
  • Heba I. Ghamry,
  • Diaa Abd El-Moneim,
  • Mohamed M. Kamara,
  • Abdelraouf M. Ali

DOI
https://doi.org/10.7717/peerj.19341
Journal volume & issue
Vol. 13
p. e19341

Abstract

Read online Read online

Drought is a critical abiotic stress significantly reducing global wheat production, especially under climate fluctuations. Investigating wheat genetic variability using physiological and agronomic characteristics is essential for advancing breeding to enhance drought resilience and ensure sustainable production in light of global population growth. The genetic diversity and associations among traits of fourteen diverse genotypes of bread wheat in drought-stressed and well-watered conditions were studied, focusing on physiological and agronomic responses. Significant variations were detected among irrigation regimes, genotypes, and their interactions for all assessed characteristics. Drought stress substantially declined chlorophyll a (Chl a) and b (Chl b), net photosynthetic rate (NPR), transpiration rate (Tr), stomatal conductance (gs), membrane stability index (MSI), relative water content (RWC), plant height (PH), yield-related attributes, and grain yield. Conversely, it significantly increased malondialdehyde content, proline content (ProC), and activities of antioxidant enzymes, including catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD). The genotypes, G3 (L-1117), G8 (L-120), and G12 (L-1142) exhibited superior drought tolerance, maintaining high photosynthetic efficiency, RWC, antioxidant enzyme activity, and grain yield. Under drought conditions, these genotypes achieved grain yields of 6.32 t/ha (G8), 5.97 t/ha (G12), and 5.84 t/ha (G3), significantly surpassing the other genotypes. Genotypic classification and drought tolerance indices confirmed the superiority of G3, G8, and G12 as drought-resilient candidates, while G2, G5, G7, and G14 exhibited lower adaptability. Genotypic stability analysis (additive main effects and multiplicative interaction (AMMI) and ranking biplot) indicated that G3, G8, G6, and G12 were highly stable across diverse environments, making them promising candidates for wheat breeding programs. Agronomic traits such as PH, number of grains per spike (NGPS), and thousand kernel weight (TKW) were positively associated with drought tolerance. Furthermore, the multivariate analyses, including principal component analysis (PCA), correlation, and path analysis, highlighted the significance of RWC, MSI, chlorophyll content, and antioxidant enzymes in sustaining yield under drought stress. Broad-sense heritability estimates were high for key drought-related traits, particularly APX, SOD, and NGPS, indicating strong genetic potential for selection. These findings indicated the importance of integrating physiological and biochemical markers into breeding programs to develop high-yielding drought-tolerant wheat varieties, contributing to sustainable wheat production under water-limited conditions.

Keywords