Geomatics, Natural Hazards & Risk (Jan 2018)
Climatic, geomorphic and anthropogenic drivers of the 2014 extreme flooding in the Jhelum basin of Kashmir, India
Abstract
The 2014 extreme flooding in Kashmir, with the peak discharge exceeding 115,000 cfs and the Jhelum River overflowing its banks, was triggered by the complex interplay of atmospheric disturbances causing widespread extreme rainfall for 7 days preceding the event. We used multisource data in GIS environment; satellites, hydro-meteorological, socioeconomic and field data, to assess the role of various factors in the flooding. The event was aggravated by the geomorphic setup of the Valley. Tributaries in the south, characterized by high gradient, decreased time of runoff concentration and increased flood peakedness with short lag, almost simultaneously discharge enormous volumes of floodwaters into the Jhelum around Sangam. Owing to the flat gradient of the Jhelum from Sangam downstream (<5o), floods historically inundate vast areas in the stretch. The situation was exacerbated by the anthropogenic drivers, such as extensive urbanization of the floodplain, loss of wetlands, and decreased channel capacity due to the siltation from the deforested mountainous landscapes. The dilapidated flood control infrastructure and the institutional inability to manage the enormity of the event made the situation worst causing unprecedented damage to the infrastructure in the basin with the capital city Srinagar inundated up to ∼30ft for more than a week.
Keywords