Frontiers in Chemistry (Dec 2019)

Layered Titanate H2Nd2Ti3O10 Intercalated With n-Butylamine: A New Highly Efficient Hybrid Photocatalyst for Hydrogen Production From Aqueous Solutions of Alcohols

  • Ivan A. Rodionov,
  • Elizaveta A. Maksimova,
  • Artem Y. Pozhidaev,
  • Sergey A. Kurnosenko,
  • Oleg I. Silyukov,
  • Irina A. Zvereva

DOI
https://doi.org/10.3389/fchem.2019.00863
Journal volume & issue
Vol. 7

Abstract

Read online

A layered perovskite-type oxide intercalated with n-butylamine is reported as an efficient photocatalyst for hydrogen production from aqueous solutions of alcohols for the first time. The hybrid photocatalyst H2Nd2Ti3O10×BuNH2 was synthesized by solid-state ceramic method followed by protonation, intercalation of methylamine and subsequent substitution by n-butylamine. The product was characterized by powder XRD, TGA, STA-MS, DRS, IR, and Raman spectroscopy, CHN analysis, SEM. Intercalation of n-butylamine caused a dramatic increase in photocatalytic activity of H2Nd2Ti3O10 in the reaction of hydrogen evolution from aqueous solutions of methanol, ethanol, and n-butanol under UV radiation. While the non-intercalated Pt-loaded H2Nd2Ti3O10 showed a maximum quantum efficiency of only 2% in the 220–340 nm range, the efficiency for hybrid samples reached 23% under the same conditions and after variation of experimental parameters even 52% efficiency was achieved. This effect may be associated with the significant expansion of the interlayer space, which is considered as a separate reaction zone.

Keywords