BMC Research Notes (Aug 2017)

Endurance training lowers ribosome density despite increasing ribosome biogenesis markers in rodent skeletal muscle

  • Matthew A. Romero,
  • C. Brooks Mobley,
  • Melissa A. Linden,
  • Grace Margaret-Eleanor Meers,
  • Jeffrey S. Martin,
  • Kaelin C. Young,
  • R. Scott Rector,
  • Michael D. Roberts

DOI
https://doi.org/10.1186/s13104-017-2736-0
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Objective The purpose of this study was to examine if: (a) high sugar/high fat Western diet (WD)-feeding affects skeletal muscle ribosome biogenesis markers in hyperphagic, diabetic-prone Otsuka Long-Evans Tokushima Fatty (OLETF) rats, and (b) 12 weeks of treadmill training rescued potential detriments that WD feeding exerted on these markers. Methods Eight week-old male OLETF rats were fed a low-fat control diet (O-CON, n = 10) or high/sucrose/cholesterol Western diet (WD). At weeks 20–32 of age, WD-fed rats were divided into WD sedentary (O-WD/SED, n = 16), or WD treadmill trained (5 days/week, 60 min/day) (O-WD/EX, n = 10) conditions. Results Interestingly, total RNA (i.e., ribosome density) was 2.3-fold greater in O-WD/SED versus O-WD/EX rats (p = 0.003) despite levels of upstream binding factor protein, RNA polymerase I protein and pre-45S rRNA being greater in O-WD/EX rats. Ribophagy (USP10 and G3BP1) and TRAMP-exosome rRNA degradation pathway (EXOSC10 and SKIV2L2) proteins were assayed to determine if these pathways were involved with lower ribosome density in O-WD/EX rats. While USP10 was higher in O-CON versus O-WD/SED and O-WD/EX rats (p < 0.001 and p < 0.001, respectively), G3BP1, EXOSC10 and SKIV2L2 did not differ between groups. Nop56 and Ncl mRNAs, ribosome assembly markers, were highest in O-WD/EX rats. However, Fbl mRNA and 28S rRNA, downstream ribosome processing markers, were lowest in O-WD/EX rats. Collectively these data suggest that, in WD-fed rats, endurance training increases select skeletal muscle ribosome biogenesis markers. However, endurance training may reduce muscle ribosome density by interfering with rRNA processing and/or export through mechanisms independent of ribophagy or rRNA degradation.

Keywords