Cancers (Aug 2023)

Circulating Tumor DNA in Head and Neck Squamous Cell Carcinoma: Association with Metabolic Tumor Burden Determined with FDG-PET/CT

  • Antti Silvoniemi,
  • Jukka Laine,
  • Katri Aro,
  • Linda Nissi,
  • Leif Bäck,
  • Jukka Schildt,
  • Jussi Hirvonen,
  • Jaana Hagström,
  • Heikki Irjala,
  • Leena-Maija Aaltonen,
  • Marko Seppänen,
  • Heikki Minn

DOI
https://doi.org/10.3390/cancers15153970
Journal volume & issue
Vol. 15, no. 15
p. 3970

Abstract

Read online

Background: The detection of circulating tumor DNA (ctDNA) with next-generation sequencing (NGS) in venous blood is a promising tool for the genomic profiling of head and neck squamous cell carcinoma (HNSCC). The association between ctDNA findings and metabolic tumor burden detected with FDG-PET/CT imaging is of particular interest for developing prognostic and predictive algorithms in HNSCC. Methods: Twenty-six prospectively enrolled HNSCC patients were eligible for further analysis. All patients underwent tumor tissue and venous liquid biopsy sampling and FDG-PET/CT before definitive oncologic treatment. An NGS-based commercial panel was used for a genomic analysis of the samples. Results: Maximum variant allele frequency (VAF) in blood correlated positively with whole-body (WB) metabolic tumor volume (MTV) and total lesion glycolysis (TLG) (r = 0.510, p = 0.008 and r = 0.584, p = 0.002, respectively). A positive liquid biopsy was associated with high WB-TLG using VAF ≥ 1.00% or ≥5.00% as a cut-off value (p = 0.006 or p = 0.003, respectively). Additionally, ctDNA detection was associated with WB-TLG when only concordant variants detected in both ctDNA and tissue samples were considered. Conclusions: A high metabolic tumor burden based on FDG imaging is associated with a positive liquid biopsy and high maximum VAF. Our findings suggest a complementary role of metabolic and genomic signatures in the pre-treatment evaluation of HNSCC.

Keywords