PLoS ONE (Jan 2017)

Characteristics and origin of the relatively high-quality tight reservoir in the Silurian Xiaoheba Formation in the southeastern Sichuan Basin.

  • Xiaoxing Gong,
  • Zejin Shi,
  • Yong Wang,
  • Yaming Tian,
  • Wenjie Li,
  • Lei Liu

DOI
https://doi.org/10.1371/journal.pone.0180980
Journal volume & issue
Vol. 12, no. 7
p. e0180980

Abstract

Read online

A mature understanding of the sandstone gas reservoir in the Xiaoheba Formation in the southeastern Sichuan Basin remains lacking. To assess the reservoir characteristics and the origin of the high-quality reservoir in the Xiaoheba Formation, this paper uses systematic field investigations, physical property analysis, thin section identification, scanning electron microscopy and electron microprobe methods. The results indicate that the Xiaoheba sandstone is an ultra-tight and ultra-low permeability reservoir, with an average porosity of 2.97% and an average permeability of 0.56×10-3 μm2. This promising reservoir is mainly distributed in the Lengshuixi and Shuangliuba regions and the latter has a relatively high-quality reservoir with an average porosity of 5.28% and average permeability of 0.53×10-3 μm2. The reservoir space comprises secondary intergranular dissolved pores, moldic pores and fractures. Microfacies, feldspar dissolution and fracture connectivity control the quality of this reservoir. The relatively weak compaction and cementation in the interbedded delta front distal bar and interdistributary bay microfacies indirectly protected the primary intergranular pores and enhanced late-stage dissolution. Late-stage potassium feldspar dissolution was controlled by the early-stage organic acid dissolution intensity and the distance from the hydrocarbon generation center. Early-stage fractures acted as pathways for organic acid migration and were therefore important factors in the formation of the reservoir. Based on these observations, the area to the west of the Shuangliuba and Lengshuixi regions has potential for gas exploration.