Sensors (Sep 2024)

Brain Neuroplasticity Leveraging Virtual Reality and Brain–Computer Interface Technologies

  • Athanasios Drigas,
  • Angeliki Sideraki

DOI
https://doi.org/10.3390/s24175725
Journal volume & issue
Vol. 24, no. 17
p. 5725

Abstract

Read online

This study explores neuroplasticity through the use of virtual reality (VR) and brain–computer interfaces (BCIs). Neuroplasticity is the brain’s ability to reorganize itself by forming new neural connections in response to learning, experience, and injury. VR offers a controlled environment to manipulate sensory inputs, while BCIs facilitate real-time monitoring and modulation of neural activity. By combining VR and BCI, researchers can stimulate specific brain regions, trigger neurochemical changes, and influence cognitive functions such as memory, perception, and motor skills. Key findings indicate that VR and BCI interventions are promising for rehabilitation therapies, treatment of phobias and anxiety disorders, and cognitive enhancement. Personalized VR experiences, adapted based on BCI feedback, enhance the efficacy of these interventions. This study underscores the potential for integrating VR and BCI technologies to understand and harness neuroplasticity for cognitive and therapeutic applications. The researchers utilized the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) method to conduct a comprehensive and systematic review of the existing literature on neuroplasticity, VR, and BCI. This involved identifying relevant studies through database searches, screening for eligibility, and assessing the quality of the included studies. Data extraction focused on the effects of VR and BCI on neuroplasticity and cognitive functions. The PRISMA method ensured a rigorous and transparent approach to synthesizing evidence, allowing the researchers to draw robust conclusions about the potential of VR and BCI technologies in promoting neuroplasticity and cognitive enhancement.

Keywords