Journal of Global Antimicrobial Resistance (Mar 2024)

Genomic and epidemiological characterization of a blaCTX-M-27-carrying ST34 Salmonella enterica serotype Typhimurium in China

  • Xiaohong Xu,
  • Minfei Peng,
  • Yizhang Wang,
  • Fengjiao Zhu,
  • Weiwei Shen,
  • Danni Bao

Journal volume & issue
Vol. 36
pp. 345 – 349

Abstract

Read online

ABSTRACT: Objectives: Consuming contaminated food and water is a leading cause of food poisoning, with Salmonella being one of the primary culprits. The aim of this study is to elucidate the genomic characteristics of a blaCTX-M-27-carrying S. enterica strain recovered from a patient with diarrhoea in China. Methods: Antimicrobial susceptibility of S. enterica strain 123 was determined by microdilution broth assay. Whole-genome sequencing was performed using both long-read MinION and short-read Illumina platforms to fully characterize the genetic structure of the blaCTX-M-27-carrying plasmid of the S. enterica 123. In silico multilocus sequence typing (MLST), antimicrobial resistance genes and genomic epidemiological analysis of 69 Salmonella strains carrying the blaCTX-M-27 gene stored in NCBI GenBank were further analysed by BacWGSTdb 2.0 server. Results: The isolate was resistant to ampicillin, ampicillin/sulbactam, ceftazidime, ceftriaxone, cefepime, aztreonam, azithromycin, but still susceptible to ciprofloxacin, levofloxacin, imipenem, amikacin, trimethoprim-sulfamethoxazole and gentamicin. The complete genome sequence of Salmonella 123 is made up of one chromosome and three plasmids, which could be assigned as sequence type (ST)34. The blaCTX-M-27 gene was found in the 65 644 bp IncFII-type plasmid with IS26 and IS5 exist upstream of blaCTX-M-27 gene, and IS26 and IS1B are located downstream as a truncated fragment. The closest relative of Salmonella 123 was Salmonella strain La89, another ST34 strain recovered in 2011, which differed by only 52 SNPs. Conclusion: This study reports the complete genome of a blaCTX-M-27-carrying S. enterica that can be used for gaining insights into the antimicrobial resistance mechanisms and dissemination patterns of the emerging pandemic lineage ST34.

Keywords