Scientific Reports (Sep 2023)

Multimodal force and temperature tactile sensor based on a short-channel organic transistor with high sensitivity

  • Antonello Mascia,
  • Andrea Spanu,
  • Annalisa Bonfiglio,
  • Piero Cosseddu

DOI
https://doi.org/10.1038/s41598-023-43360-y
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 8

Abstract

Read online

Abstract In this manuscript, we report on a novel architecture for the fabrication of highly sensitive multimodal tactile transducers, for the simultaneous detection of temperature and force. Such devices are based on a flexible Organic Charge Modulated Field Effect Transistor (OCMFET) coupled with a pyro/piezoelectric element, namely a commercial film of poly-vinylene difluoride (PVDF). The reduction of the channel length, obtained by employing a low-resolution vertical channel architecture, allowed to maximize the ratio between the sensing area and the transistor’s channel area, a technological approach that allows to considerably enhance both temperature and force sensitivity, while at the same time minimize the sensor’s dimensions. Thanks to the employment of a straightforward, up-scalable, and highly reproducible fabrication process, this solution represents an interesting alternative for all those applications requiring high-density, high-sensitivity sensors such as robotics and biomedical applications.