Respiratory Research (May 2011)

Transcriptional landscape of bone marrow-derived very small embryonic-like stem cells during hypoxia

  • Dayyat Ehab A,
  • Kucia Magdalena J,
  • Khalyfa Abdelnaby,
  • Gharib Sina A,
  • Kim Jinkwan,
  • Clair Heather B,
  • Gozal David

DOI
https://doi.org/10.1186/1465-9921-12-63
Journal volume & issue
Vol. 12, no. 1
p. 63

Abstract

Read online

Abstract Background Hypoxia is a ubiquitous feature of many lung diseases and elicits cell-specific responses. While the effects of hypoxia on stem cells have been examined under in vitro conditions, the consequences of in vivo oxygen deprivation have not been studied. Methods We investigated the effects of in vivo hypoxia on a recently characterized population of pluripotent stem cells known as very small embryonic-like stem cells (VSELs) by whole-genome expression profiling and measuring peripheral blood stem cell chemokine levels. Results We found that exposure to hypoxia in mice mobilized VSELs from the bone marrow to peripheral blood, and induced a distinct genome-wide transcriptional signature. Applying a computationally-intensive methodology, we identified a hypoxia-induced gene interaction network that was functionally enriched in a diverse array of programs including organ-specific development, stress response, and wound repair. Topographic analysis of the network highlighted a number of densely connected hubs that may represent key controllers of stem cell response during hypoxia and, therefore, serve as putative targets for altering the pathophysiologic consequences of hypoxic burden. Conclusions A brief exposure to hypoxia recruits pluripotent stem cells to the peripheral circulation and actives diverse transcriptional programs that are orchestrated by a selective number of key genes.