Journal of Chemistry (Jan 2020)

Synthesis, Characterization and Antibacterial Activity of Schiff Base, 4-Chloro-2-{(E)-[(4-Fluorophenyl)imino]methyl}phenol Metal (II) Complexes

  • F. K. Ommenya,
  • E. A. Nyawade,
  • D. M. Andala,
  • J. Kinyua

DOI
https://doi.org/10.1155/2020/1745236
Journal volume & issue
Vol. 2020

Abstract

Read online

A new series of Mn (II), Co (II), Ni (II), Cu (II), and Zn (II) complexes of the Schiff base ligand, 4-chloro-2-{(E)-[(4-fluorophenyl)imino]methyl}phenol (C13H9ClFNO), was synthesized in a methanolic medium. The Schiff base was derived from the condensation reaction of 5-chlorosalicylaldehyde and 4-fluoroaniline at room temperature. Elemental analysis, FT-IR, UV-Vis, and NMR spectral data, molar conductance measurements, and melting points were used to characterize the Schiff base and the metal complexes. From the elemental analysis data, the metal complexes formed had the general formulae [M(L)2(H2O)2], where L = Schiff base ligand (C13H9ClFNO) and M = Mn, Co, Ni, Cu, and Zn. On the basis of FT-IR, electronic spectra, and NMR data, “O” and “N” donor atoms of the Schiff base ligand participated in coordination with the metal (II) ions, and thus, a six coordinated octahedral geometry for all these complexes was proposed. Molar conductance studies on the complexes indicated they were nonelectrolytic in nature. The Schiff base ligand and its metal (II) complexes were tested in vitro to evaluate their bactericidal activity against Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus subtilis and Staphylococcus typhi) using the disc diffusion method. The antibacterial evaluation results revealed that the metal (II) complexes exhibited higher antibacterial activity than the free Schiff base ligand.