Symmetry (Oct 2024)

Experimental Study on Strength and Deformation Moduli of Columnar Jointed Rock Mass—Uniaxial Compression as an Example

  • Zhenbo Xu,
  • Zhende Zhu,
  • Chao Jiang,
  • Xiaobin Hu

DOI
https://doi.org/10.3390/sym16101380
Journal volume & issue
Vol. 16, no. 10
p. 1380

Abstract

Read online

The irregular joint network unique to columnar joints separates the rock mass into several irregular polygonal prisms. Similar physical model specimens of columnar jointed rock mass (CJRM) were fabricated using a rock-like material. The effect of the irregularity of the joint network was considered in the horizontal plane, and the effect of the dip angle of the joint network was considered in the vertical plane. The strength and deformation moduli of the specimen were investigated using uniaxial compression tests. A total of four failure modes of regular columnar jointed rock mass (RCJRM) and irregular columnar jointed rock mass (ICJRM) were identified through the tests. The peak stress of the irregular columnar jointed rock mass specimen is reduced by 56.65%. The strength and deformation moduli of RCJRM were greater than those of ICJRM, while the anisotropic characteristics of ICJRM were stronger. The failure mode of CJRM was determined by the dip angle. With the increase in the dip angle, the strength and deformation moduli of irregular columnar jointed rock mass are a symmetrical “V” type distribution, 45° corresponds to the minimum strength, and 30° obtains the minimum deformation modulus. With the increase in the irregularity coefficient, the strength and deformation moduli of CJRM decreased first and then increased gradually. When the irregularity coefficient is 0.1, the linear deformation modulus reaches the minimum value. When the irregularity coefficient is 0.7, the median deformation modulus reaches the minimum value. The fitting function proposed in the form of the cosine function managed to predict the strength value of CJRM and showed the strength of the anisotropic characteristics caused by the change in the dip angle. Compared with the existing physical model test results, it is determined that the strength of the specimen is positively correlated with the addition amount of rock-like material and the loading rate, and negatively correlated with the water consumption.

Keywords