Applied Sciences (Dec 2024)
A Fuzzy-Control Anti-Cybersickness Intelligent System (FCACIS) Designed for Multiple Inducing Factors in a 3D Virtual Store
Abstract
As online shopping has increased, the business models of online stores have diversified. When consumers cannot experience an actual product, merchants will promote products through a display to attract customers. Virtual reality (VR) provides an immersive platform for consumers to interact with virtual scenarios. Unfortunately, cybersickness remains a problem in VR. The uncomfortable effects of VR hinder its commercial expansion and the broader adoption of 3D virtual stores. Cybersickness has many causes, including personal characteristics, hardware interfaces, and operation behavior. This study develops a fuzzy-control anti-cybersickness intelligent system (FCACIS) with these factors dynamically and actively. The system retrieves the operation value and inferences the cybersickness symptom value (CSSV). When the CSSV exceeds the alarm value, a dialog mode is introduced to remind users to be aware of possible cybersickness. If the CSSV continues to increase, a cybersickness defense mechanism is activated, such as decreasing the field of view and freezing the screen. The experimental results revealed a significant difference in SSQ scores between subjects who navigated a 3D virtual store with and without the FCACIS. The SSQ scores of subjects with the FCACIS (SSQ = 20.570) were significantly lower than those of subjects without the FCACIS (SSQ = 32.880). The FCACIS effectively alleviated cybersickness for subjects over 40 years old. Additionally, the FCACIS effectively slowed the onset of cybersickness in men and women. The anti-cybersickness effect of the FCACIS on flat-panel displays was greater than that on HMDs. The symptoms of cybersickness for a 3DOF controller were also reduced.
Keywords