Intensive genetic analysis for Chinese patients with very high triglyceride levels: Relations of mutations to triglyceride levels and acute pancreatitisResearch in context
Jing-Lu Jin,
Di Sun,
Ye-Xuan Cao,
Hui-Wen Zhang,
Yuan-Lin Guo,
Na-Qiong Wu,
Cheng-Gang Zhu,
Ying Gao,
Qiu-Ting Dong,
Geng Liu,
Qian Dong,
Jian-Jun Li
Affiliations
Jing-Lu Jin
Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
Di Sun
Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
Ye-Xuan Cao
Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
Hui-Wen Zhang
Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
Yuan-Lin Guo
Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
Na-Qiong Wu
Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
Cheng-Gang Zhu
Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
Ying Gao
Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
Qiu-Ting Dong
Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
Geng Liu
Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
Qian Dong
Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
Jian-Jun Li
Corresponding author.; Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
Background: Severe hypertriglyceridemia (SHTG, TG ≥5·65 mmol/L), a disease, usually resulting from a combination of genetic and environmental factors, may increase the risk of acute pancreatitis (AP). However, previous genetic analysis has been limited by lacking of related observation of gene to AP. Methods: The expanding genetic sequencing including 15 TG-related genes (LPL, LMF1, APOC2, GPIHBP1, GCKR, ANGPTL3, APOB, APOA1-A4-C3-A5, TRIB1, CETP, APOE, and LIPI) was performed within 103 patients who were diagnosed with primary SHTG and 46 age- and sex-matched normal controls. Findings: Rare variants were found in 46 patients and 12 controls. The detection rate of rare variants in SHTG group increased by 19·5% via intensive genetic analysis. Presence of rare variants in LPL, APOA5, five LPL molecular regulating genes and all the sequenced genes were found to be associated with SHTG (p < 0·05). Of noted, patients with history of AP presented higher frequency of rare variants in LPL gene and all the LPL molecular regulating genes (27·8% vs.4·7% and 50·0% vs. 20·0%). The risk scores for SHTG determined by common TG-associated variants were increased in subgroups according to the extent of SHTG when they were compared with that of controls. Finally, patients without rare variants within SHTG group also presented higher risk scores than control group (p < 0·05). Interpretation: Expanding genetic analysis had a higher detection rate of rare variants in patients with SHTG. Rare variants in LPL and its molecular regulating genes could increase the risk of AP among Chinese patients with SHTG. Fund: This work was partially supported by the Capital Health Development Fund (201614035) and CAMS. Major Collaborative Innovation Project (2016-I2M-1-011) awarded to Dr. Jian-Jun Li, MD, PhD. Keywords: Hypertriglyceridemia, Genetic analysis, Acute pancreatitis