Florfenicol (FLO) has been shown to elicit diverse toxic effects in plants, insects, and mammals. Previously, our investigations revealed that FLO induced abnormal cardiac development and early embryonic mortality in chicken embryos. However, the effect of FLO on mitochondrial responses in stem cells remains unclear. In this study, we show that FLO significantly diminishes proliferation viability and obstructs the directed differentiation of P19 stem cells (P19SCs) into cardiomyocytes. Proteomic analysis revealed 148 differentially expressed proteins in response to FLO. Functional analysis has pinpointed FLO interference with biological processes associated with oxidative phosphorylation within the mitochondria. In alignment with the results of proteomic analysis, we confirmed that FLO inhibits the expression of both nuclear DNA-encoded and mitochondrial DNA-encoded subunits of the electron transport chain. Subsequent experiments demonstrated that FLO disrupts mitochondrial dynamics and induces the mitochondrial unfolded protein response to maintain mitochondrial homeostasis. These findings collectively highlight the significance of mitochondrial dynamics and the mitochondrial unfolded protein response to mediate the decreased proliferation viability and directed differentiation potential in P19SCs treated with FLO. In conclusion, this study provides a comprehensive overview of mitochondrial responses to FLO-induced cytotoxicity and enhances our understandings of the molecular mechanisms underlying FLO-induced embryonic toxicity.