In Autumn 2020, DOAJ will be relaunching with a new website with updated functionality, improved search, and a simplified application form. More information is available on our blog. Our API is also changing.

Hide this message

Modification of used commercial reverse osmosis membranes to nanofiltration modules for the production of mineral-rich packaged drinking water

Applied Water Science. 2020;10(11):1-17 DOI 10.1007/s13201-020-01312-1

 

Journal Homepage

Journal Title: Applied Water Science

ISSN: 2190-5487 (Print); 2190-5495 (Online)

Publisher: SpringerOpen

Society/Institution: King Abdulaziz City for Science and Technology

LCC Subject Category: Technology: Environmental technology. Sanitary engineering: Water supply for domestic and industrial purposes

Country of publisher: Germany

Language of fulltext: English

Full-text formats available: PDF, HTML

 

AUTHORS


B. Govardhan (Membrane Separations Laboratory, Process Engineering and Technology Transfer Division, CSIR-Indian Institute of Chemical Technology)

S. Fatima (Membrane Separations Laboratory, Process Engineering and Technology Transfer Division, CSIR-Indian Institute of Chemical Technology)

M. Madhumala (Membrane Separations Laboratory, Process Engineering and Technology Transfer Division, CSIR-Indian Institute of Chemical Technology)

S. Sridhar (Membrane Separations Laboratory, Process Engineering and Technology Transfer Division, CSIR-Indian Institute of Chemical Technology)

EDITORIAL INFORMATION

Blind peer review

Editorial Board

Instructions for authors

Time From Submission to Publication: 13 weeks

 

Abstract | Full Text

Abstract Global supply of commercial reverse osmosis (RO) membranes is growing exponentially due to rapid population growth, industrialization, and urbanization. The continuous demand for enormous quantity of drinking water has brought about process improvements and technological advancements in membrane preparation. The transformation of used RO membranes into nanofiltration (NF) and ultrafiltration membranes by opening up the pores using chemical treatment by inexpensive oxidizing agents could be one of the cost-effective options. The present study investigates the chemical oxidation of the indigenously synthesized RO membrane using aqueous sodium hypochlorite (NaOCl). The performance of the membrane was evaluated by conducting experiments under varying operating conditions of operating time, feed pressure, and total dissolved solids (TDS) in raw water for calculation of flux and salt rejection (%). From an initial flux of 25.2 L/m2 h and TDS rejection of 97.5% for original RO membrane, the values reached 80 L/m2 h and 25.5%, which is in NF range, after a reaction time of 780 min with 4000 ppm concentration of NaOCl oxidizing agent. Further extension of treatment time to 900 min enhanced the flux to 130 L/m2 h with salt rejection lowering to 5.67%. Membrane cleaning was performed efficiently using an advanced technique in which chlorine dioxide (ClO2) was used in combination with citric acid. This combination ensured rapid cleaning with restoration of water flux and % salt rejection. The process was scaled up to pilot plant level using RO membranes modified to NF range of pore size. Permeate water enriched with minerals was further packed using an indigenously designed semi-automatic bottling unit. The studies revealed that the indigenously developed RO membranes are easy to alter into high-performance NF membranes. Overall, the process for production of packaged drinking water was cost-effective, easy to operate, and environmentally friendly.