Tobacco Induced Diseases (Jan 2024)

PU.1 alleviates the inhibitory effects of cigarette smoke on endothelial progenitor cell function and lung-homing through Wnt/β-catenin and CXCL12/CXCR4 pathways

  • Xue He<sup>+</sup>,
  • Yanan Cui<sup>+</sup>,
  • Tiao Li,
  • Lijuan Luo,
  • Zihang Zeng,
  • Yiming Ma,
  • Yan Chen

DOI
https://doi.org/10.18332/tid/174661
Journal volume & issue
Vol. 22, no. January
pp. 1 – 13

Abstract

Read online

Introduction Endothelial progenitor cells (EPCs) dysfunction is involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). The transcription factor PU.1 is essential for the maintenance of stem/progenitor cell homeostasis. However, the role of PU.1 in COPD and its effects on EPC function and lunghoming, remain unclear. This study aimed to explore the protective activity of PU.1 and the underlying mechanisms in a cigarette smoke extract (CSE)-induced emphysema mouse model. Methods C57BL/6 mice were treated with CSE to establish a murine emphysema model and injected with overexpressed PU.1 or negative control adeno-associated virus. Morphometry of lung slides, lung function, and apoptosis of lung tissues were evaluated. Immunofluorescence co-localization was used to analyze EPCs homing into the lung. Flow cytometry was performed to detect EPC count in lung tissues and bone marrow (BM). The angiogenic ability of BM-derived EPCs cultured in vitro was examined by tube formation assay. We determined the expression levels of PU.1, β-catenin, C-X-C motif ligand 12 (CXCL12), C-X-C motif receptor 4 (CXCR4), stem cell antigen-1 (Sca-1), and stemness genes. Results CSE exposure significantly reduced the expression of PU.1 in mouse lung tissues, BM, and BM-derived EPCs. PU.1 overexpression attenuated CSE-induced emphysematous changes, lung function decline, and apoptosis. In emphysematous mice, PU.1 overexpression markedly reversed the decreased proportion of EPCs in BM and promoted the lung-homing of EPCs. The impaired angiogenic ability of BM-derived EPCs induced by CSE could be restored by the overexpression of PU.1. In addition, PU.1 upregulation evidently reversed the decreased expression of β-catenin, CXCL12, CXCR4, Scal-1, and stemness genes in mouse lung tissues, BM, and BM-derived EPCs after CSE exposure. Conclusions PU.1 alleviates the inhibitory effects of CSE on EPC function and lunghoming via activating the canonical Wnt/β-catenin pathway and CXCL12/CXCR4 axis. While further research is needed, our research may indicate a potential therapeutic target for COPD patients.

Keywords