Energies (May 2023)

Experimental Study on the Preparation of Hydrogen-Rich Gas by Gasifying of Traditional Chinese Medicine Residue in a DFB Based on Calcium Looping

  • Xiaoquan Zhou,
  • Liguo Yang,
  • Xiaoxu Fan,
  • Xuanyou Li

DOI
https://doi.org/10.3390/en16114434
Journal volume & issue
Vol. 16, no. 11
p. 4434

Abstract

Read online

Using traditional Chinese medicine residue biomass as the raw material and industrial limestone as a carbon absorbent, this paper investigates the production of hydrogen-rich synthesis gas in a pilot-scale calcium looping dual fluidized bed (DFB) system. The study focuses on analyzing the distribution characteristics of temperature and pressure, as well as the operation and control methods of the DFB system. The effects of reaction temperature, material layer height (residence time), water vapor/biomass ratio (S/B), and calcium/carbon molar ratio (Ca/C) on gasification products are examined. The experimental results demonstrate that as the temperature (600–700 °C), S/B ratio (0.5–1.5), Ca/C ratio (0–0.6), and other parameters increase, the gas composition shows a gradual increase in the volume content of H2, a gradual decrease in the volume content of CO, and an initial increase and subsequent decrease in the volume content of CH4. Within the range of operating conditions in this study, the optimal conditions for producing hydrogen-rich gas are 700 °C, an S/B ratio of 1.5, and a Ca/C ratio of 0.6. Furthermore, increasing the height of the material layer in the gasification furnace (residence time) enhances the absorption of CO2 by the calcium absorbents, thus promoting an increase in the volume content of H2 and the carbon conversion rate in the gas.

Keywords