International Journal of Molecular Sciences (Aug 2019)

Normalizing Plasma Renin Activity in Experimental Dilated Cardiomyopathy: Effects on Edema, Cachexia, and Survival

  • Ryan D. Sullivan,
  • Radhika M. Mehta,
  • Ranjana Tripathi,
  • Inna P. Gladysheva,
  • Guy L. Reed

DOI
https://doi.org/10.3390/ijms20163886
Journal volume & issue
Vol. 20, no. 16
p. 3886

Abstract

Read online

Heart failure (HF) patients frequently have elevated plasma renin activity. We examined the significance of elevated plasma renin activity in a translationally-relevant model of dilated cardiomyopathy (DCM), which replicates the progressive stages (A−D) of human HF. Female mice with DCM and elevated plasma renin activity concentrations were treated with a direct renin inhibitor (aliskiren) in a randomized, blinded fashion beginning at Stage B HF. By comparison to controls, aliskiren treatment normalized pathologically elevated plasma renin activity (p < 0.001) and neprilysin levels (p < 0.001), but did not significantly alter pathological changes in plasma aldosterone, angiotensin II, atrial natriuretic peptide, or corin levels. Aliskiren improved cardiac systolic function (ejection fraction, p < 0.05; cardiac output, p < 0.01) and significantly reduced the longitudinal development of edema (extracellular water, p < 0.0001), retarding the transition from Stage B to Stage C HF. The normalization of elevated plasma renin activity reduced the loss of body fat and lean mass (cachexia/sarcopenia), p < 0.001) and prolonged survival (p < 0.05). In summary, the normalization of plasma renin activity retards the progression of experimental HF by improving cardiac systolic function, reducing the development of systemic edema, cachexia/sarcopenia, and mortality. These data suggest that targeting pathologically elevated plasma renin activity may be beneficial in appropriately selected HF patients.

Keywords