Biomedicines (Apr 2025)
Recent Advancements Towards the Use of Vitamin D Isoforms and the Development of Their Synthetic Analogues as New Therapeutics
Abstract
Vitamin D and its metabolites are essential in various physiological processes, including muscle strength, metabolism, antifibrotic activity, and immune regulation. Researchers are focusing on developing vitamin D derivatives with optimized receptor selectivity and reduced systemic toxicity, enhancing their therapeutic efficacy against cancer, autoimmune disorders, and inflammatory diseases. Several analogues, such as alfacalcidol, paricalcitol, and falecalcitriol, are used for managing CKD-related bone disorders, while eldecalcitol is effective for osteoporosis, and calcipotriol against psoriasis. Recent studies have explored their impact on metabolic pathways, parathyroid hormone secretion, asthma, and liver fibrosis, revealing their broad clinical potential. Despite enormous efforts in the past decades, translations of vitamin D-drugs are disproportionately limited, mainly due to toxicity due to calcemic effects and undesirable metabolic profile. This review discusses structural modifications in vitamin D3, their influence on VDR binding, transcriptional activity, and calcium homeostasis, along with their role in targeting pathways like EGFR, KRAS, and Hedgehog in cancers. Advanced analytical techniques such as LC/ESI-MS/MS facilitate precise detection of vitamin D metabolites, further improving pharmacokinetic profiling. Future research may enable the clinical approval of novel vitamin D-based therapeutics with minimal disruption to calcium–phosphorus balance.
Keywords