Sensors (Mar 2023)

Compact UWB MIMO Antenna for 5G Millimeter-Wave Applications

  • Mohamed Atef Abbas,
  • Abdelmegid Allam,
  • Abdelhamid Gaafar,
  • Hadia M. Elhennawy,
  • Mohamed Fathy Abo Sree

DOI
https://doi.org/10.3390/s23052702
Journal volume & issue
Vol. 23, no. 5
p. 2702

Abstract

Read online

This paper presents a printed multiple-input multiple-output (MIMO) antenna with the advantages of compact size, good MIMO diversity performance and simple geometry for fifth-generation (5G) millimeter-wave (mm-Wave) applications. The antenna offers a novel Ultra-Wide Band (UWB) operation from 25 to 50 GHz, using a Defective Ground Structure (DGS) technology. Firstly, its compact size makes it suitable for integrating different telecommunication devices for various applications, with a prototype fabricated having a total size of 33 mm × 33 mm × 0.233 mm. Second, the mutual coupling between the individual elements severely impacts the diversity properties of the MIMO antenna system. An effective technique of orthogonally positioning the antenna elements to each other increased their isolation; thus, the MIMO system provides the best diversity performance. The performance of the proposed MIMO antenna was investigated in terms of S-parameters and MIMO diversity parameters to ensure its suitability for future 5G mm-Wave applications. Finally, the proposed work was verified by measurements and exhibited a good match between simulated and measured results. It achieves UWB, high isolation, low mutual coupling, and good MIMO diversity performance, making it a good candidate and seamlessly housed in 5G mm-Wave applications.

Keywords