Molecules (Jul 2024)
High Performance Aqueous Zinc-Ion Batteries Developed by PANI Intercalation Strategy and Separator Engineering
Abstract
Aqueous zinc-ion batteries (ZIBs) have attracted burgeoning attention and emerged as prospective alternatives for scalable energy storage applications due to their unique merits such as high volumetric capacity, low cost, environmentally friendly, and reliable safety. Nevertheless, current ZIBs still suffer from some thorny issues, including low intrinsic electron conductivity, poor reversibility, zinc anode dendrites, and side reactions. Herein, conductive polyaniline (PANI) is intercalated as a pillar into the hydrated V2O5 (PAVO) to stabilize the structure of the cathode material. Meanwhile, graphene oxide (GO) was modified onto the glass fiber (GF) membrane through simple electrospinning and laser reduction methods to inhibit dendrite growth. As a result, the prepared cells present excellent electrochemical performance with enhanced specific capacity (362 mAh g−1 at 0.1 A g−1), significant rate capability (280 mAh g−1 at 10 A g−1), and admirable cycling stability (74% capacity retention after 4800 cycles at 5 A g−1). These findings provide key insights into the development of high-performance zinc-ion batteries.
Keywords