International Journal of Nanomedicine (Jun 2021)
Hydroxyapatite/NELL-1 Nanoparticles Electrospun Fibers for Osteoinduction in Bone Tissue Engineering Application
Abstract
Hualei Song,1,* Yuntao Zhang,2,* Zihan Zhang,2,* Shijiang Xiong,3 Xiangrui Ma,2 Yourui Li2 1Department of Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, People’s Republic of China; 2Department of Stomatology, Binzhou Medical University Hospital, Binzhou, 256603, People’s Republic of China; 3Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, 250012, People’s Republic of China*These authors contributed equally to this workCorrespondence: Yourui LiDepartment of Stomatology, Binzhou Medical University Hospital, 661#, 2nd Huanghe Road, Binzhou, 256603, Shangdong Province, People’s Republic of ChinaTel +86 543 3256715Email [email protected]: As commonly bone defect is a disease of jaw that can seriously affect implant restoration, the bioactive scaffold can be used as potential systems to provide effective repair for bone defect.Purpose: A osteoinductive bone tissue engineering scaffold has been prepared in order to explore the effect of bioactive materials on bone tissue engineering.Methods: In this study, NELL-1 nanoparticles (Chi/NNP) and nano hydroxyapatite were incorporated in composite scaffolds by electrospinning and characterized using TEM, SEM, contact angle, tensile tests and in vitro drug release. In vitro biological activities such as MC3T3-E1 cell attachment, proliferation and osteogenic activity were studied.Results: With the addition of nHA and nanoparticles, the fiber diameter of PCL/BNPs group, PCL/NNPs group and PCL/nHA/NNPs group was significantly increased. Moreover, the hydrophilic hydroxyl group and amino group presented in nHA and nanoparticles had improved the hydrophilicity of the composite fibers. The composite electrospun containing Chi/NNPs can form a double protective barrier which can effectively prolong the release time of NELL-1 growth factor. In addition, the hydroxyapatite/NELL-1 nanoparticles electrospun fibers can promote attachment, proliferation, differentiation of MC3T3-E1 cells and good cytocompatibility, indicating better ability of inducing osteogenic differentiation.Conclusion: A multi-functional PCL/nHA/NNPs composite fiber with long-term bioactivity and osteoinductivity was successfully prepared by electrospinning. This potential composite could be used as scaffolds in bone tissue engineering application after in vivo studies.Keywords: polycaprolactone, nanoscaffold, MC3T3-E1 cells, osteogenic activity