Scientific Reports (Dec 2023)

Pericentromeric recombination suppression and the ‘large X effect’ in plants

  • Edgar L. Y. Wong,
  • Dmitry A. Filatov

DOI
https://doi.org/10.1038/s41598-023-48870-3
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 12

Abstract

Read online

Abstract X chromosome was reported to be a major contributor to isolation between closely related species—the ‘large X’ effect (LXE). The causes of LXE are not clear, but the leading theory is that it is caused by recessive species incompatibilities exposed in the phenotype due to the hemizygosity of X-linked genes in the heterogametic sex. However, the LXE was also reported in species with relatively recently evolved sex chromosomes where Y chromosome is not completely degenerate and X-linked genes are not hemizygous, such as the plant Silene latifolia. Recent genome sequencing and detailed genetic mapping in this species revealed a massive (> 330 Mb) non- or rarely-recombining pericentromeric region on the X chromosome (Xpr) that comprises ~ 90% of the chromosome and over 13% of the entire genome. If any of the Xpr genes are involved in species incompatibilities, this would oppose interspecific gene flow for other genes tightly linked in the Xpr. Here we test the hypothesis that the previously reported LXE in S. latifolia is caused by the lack of recombination on most of the X chromosome. Based on genome-wide analysis of DNA polymorphism and gene expression in S. latifolia and its close cross-compatible relative S. dioica, we report that the rarely-recombining regions represent a significant barrier for interspecific gene flow. We found little evidence for any additional factors contributing to the LXE, suggesting that extensive pericentromeric recombination suppression on the X-chromosome is the major if not the only cause of the LXE in S. latifolia and S. dioica.