Abstract and Applied Analysis (Jan 2015)

Some Inequalities for the Omori-Yau Maximum Principle

  • Kyusik Hong

DOI
https://doi.org/10.1155/2015/410896
Journal volume & issue
Vol. 2015

Abstract

Read online

We generalize A. Borbély’s condition for the conclusion of the Omori-Yau maximum principle for the Laplace operator on a complete Riemannian manifold to a second-order linear semielliptic operator L with bounded coefficients and no zeroth order term. Also, we consider a new sufficient condition for the existence of a tamed exhaustion function. From these results, we may remark that the existence of a tamed exhaustion function is more general than the hypotheses in the version of the Omori-Yau maximum principle that was given by A. Ratto, M. Rigoli, and A. G. Setti.