IEEE Access (Jan 2019)
Design and Implementation of Lead–Carbon Battery Storage System
Abstract
In this paper, we described a design scheme for a lead-carbon battery energy storage system (BESS). A two-stage topology of lead-carbon battery energy storage system was adopted. The number and connection structure of battery cells were designed based on the actual demand. The main circuit parameters of the BESS were determined according to the power transfer capability, harmonic suppression, and dynamic response capability. A state feedback linearization method in a nonlinear differential geometry theory was used for dq-axis current decoupling based on the mathematical model used in the dq coordinate system of the BESS. A control strategy based on filter capacitor current inner loop, grid current middle loop, and dc voltage outer loop was adopted to suppress the resonance peak and achieve the independent regulation of active power and reactive power. The PSCAD/EMTDC simulation results and physical prototype experiments showed that the lead-carbon BESS had a good dynamic and steady-state performance.
Keywords