Applied Sciences (Feb 2025)
Digital Twin Based on CFD Modelling for Analysis of Two-Phase Flows During Pipeline Filling–Emptying Procedures
Abstract
Pipeline filling and emptying are critical hydraulic procedures involving transient two-phase air–water interactions, which can cause pressure surges and structural risks. Traditional Digital Twin models rely on one-dimensional (1D) approaches, which cannot capture air–water interactions. This study integrates Computational Fluid Dynamics (CFD) models into a Digital Twin framework for improved predictive analysis. A CFD-based Digital Twin is developed and validated using real-time pressure measurements, incorporating 2D and 3D CFD models, mesh sensitivity analysis, and calibration procedures. Key contributions include a CFD-driven Digital Twin for real-time monitoring and machine learning (ML) techniques to optimise pressure surges. ML models trained with experimental and CFD data reduce reliance on computationally expensive CFD simulations. Among the 31 algorithms tested, decision trees, efficient linear models, and ensemble classifiers achieved 100% accuracy for filling processes, while k-Nearest Neighbours (KNN) provided 97.2% accuracy for emptying processes. These models effectively predict hazardous pressure peaks and vacuum conditions, confirming their reliability in optimising pipeline operations while significantly reducing computational time.
Keywords