Аграрная наука Евро-Северо-Востока (Feb 2024)

Mathematical modeling of dynamic processes of agricultural mobile energy vehicles on an electric drive

  • Z. A. Godzhaev,
  • S. E. Senkevich,
  • I. S. Alekseev,
  • E. N. Ilchenko

DOI
https://doi.org/10.30766/2072-9081.2024.25.1.112-122
Journal volume & issue
Vol. 25, no. 1
pp. 112 – 122

Abstract

Read online

The article considers the issues of modeling the processes of agricultural mobile energy vehicles (MEV) with electric drive (ED). A review of modern literature on the problem under study as well as questions on modeling the functional properties of mobile machines and improving the quality indicators of MEV work are presented. A mathematical model of the motion of the MEV with an electric motor is presented, as well as a description of the method used and a sequence of actions for conducting research. Preliminary theoretical studies of motion in different modes of operation have been carried out. The proposed model is convenient for implementation and calculation in any of the applied software products that support the modeling of dynamic systems with an electromechanical drive. The proposed model, the solution of which is based on the methods of numerical integration of systems in the Matlab Simulink software environment, made it possible to simulate the dynamic processes of electromechanical power transmission of MEV during various agricultural operations. With the help of this model, the analysis of electromechanical processes in transient and steady-state operating modes, as well as dynamic processes in the power transmission were carried out. Graphs of changes in the studied parameters of the MEV power transmission are obtained and elastic moments in the joints of the 5-mass design scheme are determined. The use of the model allows you to track the change in statistical characteristics when the conditions of the experiment change. The model has shown its operability when performing simulation of agricultural operations: fertilization, cultivation and sowing, and it can be used at the design stage to study the characteristics of dynamic processes of small-class traction MEV power transmissions with an electromechanical drive. With different parameters of the model, there is a change in the mathematical expectation of the angular velocity of the ED from 147.89 to 156.87 rad/s, a change in the mathematical expectation of the speed of the MES from 4.51 to 4.79 m/s.

Keywords