PLoS ONE (Jan 2020)
Global and regional dispersal patterns of hepatitis B virus genotype E from and in Africa: A full-genome molecular analysis.
Abstract
Description of the spatial characteristics of viral dispersal is important in understanding the history of infections. Nine hepatitis B virus (HBV) genotypes (A-I), and a putative 10th genotype (J), with distinct geographical distribution, are recognized. In sub-Saharan Africa (sub)-genotypes A1, D3 and E circulate, with E predominating in western Africa (WA), where HBV is hyperendemic. The low genetic diversity of genotype E (HBV/E) suggests its recent emergence. Our aim was to study the dispersal of HBV/E using full-length, non-redundant and non-recombinant sequences available in public databases. HBV/E was confirmed, and the phylogeny reconstruction performed using maximum likelihood (ML) with bootstrapping. Phylogeographic analysis was conducted by reconstruction of ancestral states using the criterion of parsimony on the estimated ML phylogeny. 46.5% of HBV/E sequences were found within monophyletic clusters. Country-wise analysis revealed the existence of 50 regional clusters. Sequences from WA were located close to the root of the tree, indicating this region as the most probable origin of the HBV/E epidemic and expanded to other geographical regions, within and outside of Africa. A localized dispersal was observed with sequences from Nigeria and Guinea as compared to other WA countries. Based on the sequences available in the databases, the phylogenetic results suggest that European strains originated primarily from WA whereas a majority of American strains originated in Western Central Africa. The differences in regional dispersal patterns of HBV/E suggest limited cross-border transmissions because of restricted population movements.